

Top-Down Constraints on Fossil Fuel CO₂ Emissions for Three Urban Areas of California

Marc L. Fischer¹, Seongeun Jeong¹, Sally Newman², Arlyn E. Andrews³, Jonathan D. Kofler^{3,4}, Scott J. Lehman⁴, John B. Miller^{3,4}, Jocelyn Turnbull^{3,5}, Ying-Kuang Hsu⁶, Thomas Guilderson⁷, Laura Bianco^{3,4}, Barry Lefer⁸, Andrew R. Jacobson^{3,4}, Kevin Gurney⁹, James M. Wilczak²

¹LBNL, ²CalTech, ³NOAA-ESRL, ⁴CU-CIRES, ⁵Rafter-Lab-NZ, ⁶CARB, ⁷LLNL, ⁸U-Texas-Houston, ⁹AZ State-Tempe

We gratefully acknowledge support:

- California Energy Commission, Public Interest Environmental Research Program
- California Air Resources Board, Research Division
- Lawrence Berkeley National Laboratory, Laboratory Directed Research Development
- National Oceanic and Atmospheric Administration

We also acknowledge valuable advice and input:

W. Angevine, S. de La Rue du Cann, J. Eluszkiewicz, C. Gerbig, J. Lin, T. Nehrkorn W. Tassat, T. Wenzel, S. Wofsy

Outline

• Motivation

Need for of fossil fuel CO₂ (C_{ff}) emission inventory validation at regional scale

Atmospheric top-down approach

— Atmospheric signals diagnostic of emissions

Results

—Initial comparisons of measured and predicted C_{ff} for Central California and LA Basin

• Conclusion

Fossil fuel CO₂ emissions consistent with current CARB inventory estimate to ~ 10%

California GHG Emissions

- California is the first state in US to legislate GHG emission controls
 - —2006 Global Warming Solutions Act (AB-32): 1990 levels by 2020
 - Executive Order S-3-05: Reduce emissions to 80% below 1990 by 2050
- Inventory suggests recent emissions relatively constant
- Atmospheric inverse method provides independent check

California GHG Emissions over Time

[CARB, 2010]

Top Down Approach

- Measurements:
 - Background Mead.
 - Local measurements
- Combined with Models:
 - a Priori Emissions
 - Meteorology
 - Gas transport
- Statistical comparison yields:
 - Improved estimate of emissions

Measurements in Central and Southern California

a priori Fossil Fuel Emission Map

- VULCAN2.0 Fossil Fuel CO2
 Emission Inventory (Gurney et al., 2009)
 - Diurnal emissions by day of week, and month at 0.1 degrees
 - Multiple data sources for US
 - Careful attention to quality control
- Comparing 2002 VULCAN2.0 with LBNL/CARB county level energy analysis (CARB, 2008)
 - —Total in-state ffCO2 emissions (~ 370 MtCO₂) match to within 5%
 - RMS differences ~ 4 MtCO₂ (~ 30%)

Meteorology and Transport

- WRF-STILT for California
 - 5 Domains over W. US
 - 4 km for California
 - 1.3 km for SF Bay & LA Basin
 - Ensemble receptor trajectories
- Errors evaluated using profiler/lidar obs
 - Bias appears negligible during day
 - Propagated RMS errors 20 50% uncertainty in afternoon
 CH₄ signals (Jeong et al., 2011)
- Footprints capture sensitivity to emissions

May-June, 2010 Cal Tech WRF and Lidar

Estimating Fossil Fuel CO₂

 $\Delta^{14}CO_2$ vs time at WGC

- Measure Δ^{14} C, C_{obs} from tower flask obs and background air
- Flask measurements determine

$$\begin{split} C_{\rm ff} &= C_{\rm obs} \, (\Delta \rm obs - \Delta b ck) / \, (\Delta ff - \Delta b ck) \\ &- C_{\rm eco} \, (\Delta e co - \Delta b ck) / \, (\Delta ff - \Delta b ck) \\ C_{\rm ff} \ to \sim 1 \ ppm \ if \ \sigma_{\Lambda} \sim 2.8 \ \% \end{split}$$

• Flask measurements determine CO: C_{ff}

$$R = (CO_{obs}-CO_{bg})/C_{ff}$$

- 2009-2010 WGC

$$R = 12 + /- 1 ppb CO / ppm ffCO2$$

• Estimate continuous $C_{ff}(t)$ as

$$C_{ff}(t) = (CO_{obs}(t) - CO_{bg}(t)) / R$$

- Uncertainties:
 - errors in estimated CO_{obs}, CO_{bg}
 - variation of R

CO vs Cff at WGC

Measured and Predicted ffCO2 Walnut Grove by March, 2009 - Feb, 2010

- Data from 12-23 hr local interval
 - require well-mixed (91 483 m differences small)
 - CO fire anomalies removed in summer
- Predicted vs measured slopes ~ consistent with unity +/- ~ 10 %
 - spring had higher flask CO:CO_{2ff}
 - similar (noisier)results obtained w/12-17 hr subset

Measured and Predicted ffCO₂ May-June, 2010 CalTech

- Adopt constant CO:CO_{2ff} ratio
 - R = 11 ppb CO/ ppm CO_{2ff} (Wunch et al., 2010)
 - Consistent with two biweekly average flasks
- Predicted midday mixing ratios capture measured synoptic variations
- Slope of predicted on measured signals match to +/- 10%
 - Suggests LA emissions
 ~ consistent with
 VULCAN map

Conclusions

- Fossil fuel CO₂ dominates CA state total GHG emissions
- VULCAN2.0 map matches CA total CO_{2ff} inventory
 - —Potentially significant differences apparent at county level
- Atmospheric radiocarbon measurements valuable
 - —One year record at Walnut Grove resolves synoptic but not diurnal variations
 - Carbon monoxide used as a continuous tracer for combustion -- biomass burning can be significant error term
- Atmospheric modeling suggests VULCAN emission map captures CO_{2ff} emissions to ~ 10 % for SF Bay, Sacramento, and LA Basin
 - Longer time periods and additional measurement sites will improve estimates

